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We introduce a new scheme for the future application of Real-coded Lattice
Gas (RLG) to the numerical simulation of suspended solid objects in a fluc-
tuating fluid environment. The reproduction of Brownian motion for a single
solid object is verified through the Gaussian distribution of its displacements.
The effectiveness of the solid–solid interaction model is also confirmed in an
N-body simulation.
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1. INTRODUCTION

A series of discrete mesoscopic fluid models, which include lattice gas
automata (LGA), (1) the lattice Boltzmann method (LBM) (2, 3) and dissipa-
tive particle dynamics (DPD), (4) have been introduced during the past
decade for the analysis of complex fluids. Characteristics of these models in
common can be summarized as follows: The detailed microscopic descrip-
tion of fluids has been greatly simplified from the viewpoint of molecular
dynamics (MD), though the essential properties to ensure the conservation
of mass, momentum and energy (only in some extended models (5, 6)) are
preserved without a compromise. On the other hand, the collective or
coarse-grained dynamics of the underlying particles approaches the conti-
nuum mechanics of real fluids. The reason why these fluid models are
appealing lies in several aspects. First, comparing with those conventional
numerical methods for flow simulation, such as the finite-difference or the



finite-element solution of Navier–Stokes equations, particle-based methods
(LGA and DPD) are free from numerical instability. Next, comparing with
the more robust microscopic models, such as MD and DSMC (for direct
simulation Monte Carlo) these methods are more practical in terms of their
computational cost. Note that a very wide spectrum of time and length
scales would, in general, characterize the behavior of complex fluids, a fact
which requires a higher resolution as well as a longer time progression for
the numerical simulation. Third, pattern formation and dynamic flow of
complex fluids are often much easier to be modeled in a universal way by
intuitively introducing particle interactions or particle structures, rather
than trying to establish constitutive relationships from a huge experimental
database, in a framework of PDE (for partial differential equations)
description for the macroscopic quantities.
Recently, a new mesoscopic model was suggested by Malevanets and

Kapral. (7, 8) This model resembles LGA in synchronous discrete time evolu-
tion and in discretizing space with regular lattices. On the other hand,
positions and velocities of particles are treated as continuous variables.
Hence we name the model real-coded lattice-gas (RLG). Other differences
between RLG and LGA are the abandonment of exclusion law on particle
residence and the use of a stochastic rotational rule for particle interac-
tions. Particle dynamics consists of two processes, namely, streaming and
collision. The position of every particle is renewed in the streaming process,
and the update of velocity is done in the collision process. Since there is no
longer an exclusion law, an arbitrary number of particles can enter into a
single cell and multi-particle collisions are carried out there by rotating the
relative velocity (to the averaged velocity over the cell) of every particle
with a random angle. The kinetic theory of such a particle dynamics tells us
that the equilibrium velocity distribution function is Maxwell–Boltzmann
and that the existence of an H-theorem can be proved. Furthermore, a set
of Galilean-invariant hydrodynamic equations including the transport
equation for internal energy can be derived using the Chapman–Enskog
expansion. Also, the extension to three-dimensional models can be done in
a straightforward way. All these conclusions from previous studies seem
very encouraging, as most of the peculiarities of LGA are cured in this
model. There is also numerical evidence showing that RLG is computa-
tionally more efficient than LGA or DPD. Regarding RLG’s advantage
over LBM, one may mention the absolute numerical stability and the
reproduction of fluctuating hydrodynamics, the latter of which would be
very useful, for example, in studying problems with flow instability or the
Brownian motions.
Although research on RLG is still in its infancy and fundamental

questions of the model, such as the expression of transport coefficients, the
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validity of molecular chaos and the proof for Galilean invariance, are to be
clarified, (9) various applications have already been challenged in simula-
tions of complex fluids: the solvent dynamics, (10) the dynamics of short
polymer chains, (11) the extension to immiscible two-phase models, (12) the
amphiphilic surfactant models, (13, 14) and the simulation of a single rising
bubble. (15) In this study, we shall introduce a new scheme for the future
application of RLG to suspended solid objects in a fluctuating fluid envi-
ronment. A large number of documents on direct numerical simulation of
solid–liquid flow using the conventional Navier–Stokes solver can be found
from the web site (provided by D. D. Joseph): http://www.aem.umn.edu/
Solid-Liquid_Flows. On the other hand, the same kind of work has been
done with the use of these mesoscopic fluid models (mainly LBM
models (16–18)), all of which showed impressive agreement with experiments
and the mainstream studies. The goal for this study is, however, not as
ambitious as to compare in detail with those results or to present new
results in this field (these are planed for future studies). We shall concen-
trate on the introduction of the necessary techniques to perform such a
simulation with the RLG model.
The outline of this paper is as follows. Section 2 outlines the RLG

model and shows the conservation of mass, momentum and energy. The
reflection of RLG particles on the surface of a solid object, as well as the
solid–solid interactions will be detailed in Section 3. In Section 4, numerical
simulations will be displayed as demos of the suggested model. The
concluding remarks will be made in Section 5.

2. A BRIEF SUMMARY OF THE RLG MODEL

First of all, it might be helpful to give an explanation of the relation
between the original ‘‘continuous velocity lattice-gas’’ model (7, 8) and the
current RLG model. In the previous publication, (7) Malevanets and Kapral
employed a stochastic method for the complete translation of each particle
in the simulation system. In particular, each particle is translated accurately
only according to the integer part of its velocity. The fractional part of its
velocity is used, however, as a probability distribution for a random walk
process that followed. The consequence of this special translation is that
particles can meet others at a lattice site (the crossing point of lattice links).
Therefore the ‘‘physical contacts’’ of particles are ensured in the pre-colli-
sion stage. In fact, the random walk process could be unnecessary for two
reasons: first, collisions can occur among particles staying in a single cell
instead of at a single site; Second, since particles are distributed uniformly
within a single cell, translating particles accurately (according to both the
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integer and fractional part of coordinates) is equivalent to translating them
from the randomly shifted locations (with integer coordinates).
We realized these facts and converted the original model to RLG.

Note that Malvanets and Kapral also developed the same idea indepen-
dently at almost the same time. (8) The computational efficiency of RLG is
improved without the random walk process. Nevertheless, the effects of
numerical viscosity still exist in both the models. In the continuous velocity
lattice-gas, the numerical viscosity is explicitly added through the random
walk process. In the RLG model, however, the diffusion of velocities can
not be avoided because of the exchange of momenta among distant par-
ticles. The investigation of influences of cell size and cell shape to the
numerical dissipation of RLG is an important topic which has not been
studied yet.
The kernel of RLG consists of two processes. One is the particle-

streaming process, in which the position vectors of RLG particles would be
incremented by their displacements through a unit time, namely,

xi(t+1)=xi(t)+vi(t) (1)

Here xi(t) is the location and vi(t) is the velocity of the ith particle at time t,
respectively. The other process is collision, during which RLG particles
exchange their momentum and kinetic energy if they happened to reside in
the same collision cell, with the following algorithm,

vi(t+1)=V+W(vi(t)−V) (2)

The rotation operation W can be written explicitly, for example in 2D space
with an arbitrary deflection h as follows,

W=Rcos h − sin h

sin h cos h
S (3)

Here V is the velocity of the center of mass of those ‘‘colliding particles.’’
Usually a square lattice with links of unit length is employed in RLG, so
that the shape of a single collision cell is square in 2D or cubic in 3D.
Consider the center of such a cell is located at x=;D

m=1 (r · em+
1
2) em

where r denotes the arbitrary lattice point vector and em indicates the unit
vector along the m axis. If the mass of the ith particle is denoted as mi,
V can be calculated as

V(x, t)=
1

M(x, t)
C

i ¥ {j; [xj]=[x]}
mivi(t) (4)
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whereM(x, t) is the total mass of particles in the cell and [x] is the integer
part of x. In the following text, the summation operator will be written as
; i; x for simplicity. Obviously, the total mass is defined with the summa-
tion operator as follows.

M(x, t)=C
i; x
mi (5)

The collision matrix W can be selected randomly from the rotation group
which can ensure the conservation of mass, momentum and energy. In
practice, the rotation angle is chosen as h=± p2 , which has been suggested

(7)

as a good way to achieve a lower viscosity as long as the mean free path is
long compared to the cell size. (9) The conservation of momentum Q(x, t)=
; i; x mivi before and after the multi-particle collision can be easily shown as
follows:

C
i; x
mivi(t+1)=C

i; x
miV(x, t)+C

i; x
miW(vi(t)−V(x, t))

=C
i; x
mivi(t)+W C

i; x
mi(vi(t)−V(x, t))

=C
i; x
mivi(t) (6)

where the relation ;i; x mi(vi(t)−V(x, t))=0 is used here. The conser-
vation of the total energy E(x, t)=;i; x

1
2miv

2
i (t) can be also proved as

follows.

C
i; x

1
2miv

2
i (t+1)

=C
i; x

1
2mi{V(x, t)+W(vi(t)−V(x, t))}T {V+W(vi(t)−V(x, t))}

=C
i; x

1
2mi{V

TV+(vi−V)T WTW(vi−V)}

=C
i; x

1
2mi(V

TV+vTi vi−VTV−VTV+VTV)

=C
i; x

1
2miv

2
i (t) (7)

Here, the superscript T means the transpose of a matrix or a vector. The
fact that the rotation matrix is orthogonal (WTW=1) and the definition of
V are used in the proof above. The velocity distribution for RLG particles
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will become that of Maxwell–Boltzmann if the two processes are executed
till the whole system reaches the equilibrium state. Macroscopic variables
of the fluid model are obtained from the ensemble averages of the summed
quantities. In particular, the fluid density is calculated by r(x, t)=
OM(x, t)P, the flow velocity by v(x, t)=OV(x, t)P, and the temperature by
T(x, t)=OE(x, t)− 12M(x, t) V2(x, t)P/Cv, where Cv=d/2 is the specific
heat of the d−dimensional model. It was proved that these variables obey
the hydrodynamic equations for an ideal gas. (8)

3. MODELLING OF THE SUSPENDED SOLID OBJECTS

3.1. The Interaction Between RLG Particles and a Solid Object

In our simulation model, the fluctuating fluid phase is described by
RLG particles, while each solid object is considered as being composed of a
finite number of solid particles. The function of these solid particles which
stick firmly to each other is to express any possible shapes for the whole
solid object. Although solid particles constrained in this way can not play
any active roles in the scheme, they will be useful for the future develop-
ment of the model (we shall eventually allow and formulate the relative
motions of these particles to take the deformations of solid objects into
account). At the current stage, the statement that solid objects and RLG
particles are exclusive to each other is enough to determine the interaction
between them.

3.1.1. The Detection of Reflections

When RLG particles collide with a solid object, they are reflected
according to principles of Newtonian mechanics. Before we describe the
way in which RLG particles are reflected, a simple method for the detec-
tion of such collisions is suggested and described in reference with Fig. 1.
First step, we pick up those solid particles residing on the surface of

the solid object and define them as ‘‘surface tracers;’’ see Fig. 1(a). In the
second step, the interacting area is determined according to the surface
tracers’ positions and the normal vectors. In particular, it is formed by
cells, where the surface tracers locate, and their neighbors inside the solid
object. Finally, every RLG particle residing in an interacting cell is marked
with a flag for reflection according to the scalar product of the normal
vector n of the solid surface and the vector representing the relative posi-
tion to the local surface tracer. For example, the flag of particles A in
Fig. 1(c) is OFF, that is, it will not be reflected. On the other hand, the flag
of particle B in the same figure is ON, because the scalar product (OFB·n) is
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Fig. 1. The detection of collision between RLG particles and a solid object. In these figures,
transparent circles stand for surface tracers, which are defined as solid particles residing on the
surface of the solid object. Solid circles represent RLG particles. Thick arrows indicate the
normal vector of the local surface and thin arrows indicate the relative position of RLG par-
ticles to the surface tracer. Gray area are the internal region of the solid object. Cells of light
gray color form the interacting area, in which every RLG particle will be checked to see if the
reflection scheme should be applied.
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negative. The reflection of RLG particles are completed according to
schemes introduced in the following section.

3.1.2. The Reflection of RLG Particles

Reflections of RLG particles on the surface of a solid object are con-
sidered to be elastic ones. Specifically, the velocity of a RLG particle is
abandoned and a new velocity after the reflection is generated randomly
according to the following probability density distributions (PDFs).

Pn(cn)=mbcn exp 1−b
1
2
mc2n 2 (8)

Pt(ct)==
mb
2p
exp 1−b 1

2
mc2t 2 (9)

Here the subscripts n and t represent the normal and the tangential direc-
tions of the solid surface. The mass of each RLG particle is assumed to be
universal and indicated by m. The velocity c stands for the velocity of RLG
particles observed from a moving coordinate that is fixed on the solid
object. The temperature T=1/b is equivalent to the temperature of the
solid object. The PDF for the tangential velocity components is simply
Maxwellian and both positive and negative values are acceptable. For the
normal velocity components, however, only the positive values are adopted
to ensure the exclusion principle between RLG particles and solid objects.
The derivation of PDF for the normal velocities is shown in the following
text.
Consider an imaginary plane of a unit area moving along the z-axis

(the normal direction of the plane) in an ideal gas system which is assumed
to be in the thermal equilibrium state. Then how many particles can go
through this plane along the z direction in a unit time? Using the fact that
the velocity distribution of particles is Maxwellian, we may calculate the
number of these particles as follows.

N0z=F
0

−cz
dz FF

+.

−.
dcx dcy F

+.

0
dcz
N
V
1=mb
2p
23 exp 1 −b 1

2
mc22

=
N

V`2pmb
(10)

Here, N and V are the total particle number and the volume of the ideal
gas. The relative velocities of particles are again denoted as vector c. Next,

92 Inoue et al.



we consider the number of particles going through the surface whose
z-component of velocity is between cz and cz+Dcz.

Nz(cz)=F
0

−cŒz
dz FF

+.

−.
dc −x dc

−

y F
cz+Dcz

cz
dc −z
N
V
1=mb
2p
23 exp 1 −b 1

2
mcŒ22

=
N
V
=mb
2p
5− 1
mb
exp(−b

1
2
mc −2z )6

cz+Dcz

cz

To proceed the calculation, we use the Taylor expansion as follows.

Nz(cz)=
N
V
=mb
2p
3cz exp 1 −b

1
2
mc2z 2 Dcz

+
1
2
1exp 1 −b 1

2
mc2z 2−mbc2zexp 1 −b

1
2
mc2z 22(Dcz)2+·· · 4

4
N
V
=mb
2p
cz exp 1 −b

1
2
mc2z 2 Dcz (11)

The ratio of the two numbers, namely, Nz/N
0
z can be used to calculate the

PDF of these particles,

P(cz) dcz —
N(cz)
N0z

=mbcz exp 1 −b
1
2
mc2z 2 dcz (12)

To justify the use of this PDF as the normal velocity distribution for the
RLG particles which are reflected elastically on the solid surface, the solid
object has to be regarded as a heat bath, which seems to be a reasonable
argument.
Through the reflections of RLG particles, an amount of DQ of

translational momentum is exchanged, meanwhile an amount of DL of
angular momentum will contribute to the motion of the solid object. These
quantities can be calculated as follows.

DQ= C
i; reflected

(v −i− vi) mi (13)

DL= C
i; reflected

rs×(v
−

i− vi) mi (14)
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Here v −i indicates the particle velocity after the reflection and rs represents
the distance between the colliding position of the ith RLG particle, namely,
the position of the local surface tracer, and the center of mass of the solid
object. Finally, the motion of solid object is determined by increments of
the translational momentum and angular momentum, respectively.

Q −

object(t+Dtf)=Qobject+(−DQ) (15)

L −object(t+Dtf)=Lobject+(−DL) (16)

For the calculation of these interactions, a smaller time step (Dtf < 1) is
employed.

3.2. Motions and Interactions of Solid Objects

Motions of solid object consist of a translational one and a rotational
one according to their translational and angular velocities. If a solid object
encounters another one, they would collide with each other. The solid–solid
interaction can be modeled through a colliding impulse P.
A fourth order Runge-Kutta method is employed for the time inte-

gration of solid objects’ motions, because the rotation of every solid object
need to be calculated with a higher accuracy. To ensure the numerical
stability for the Runge-Kutta method, we choose a much smaller time step
Dts ° Dtf ° 1. Furthermore, it would be computationally expensive if we
let solid objects move simultaneously. For, multiple objects can easily
overlap with each other through their motions. If this had happened, we
would have to go back and do the calculation again with a smaller time
step. To avoid the use of an adaptive time step for the solid objects’
motion, we use a random order list for the time evolution. Every solid
object is moved according to the order list. If two solid particles are found
in the same cell, the solid–solid interaction will be disposed with priority.
Next, we show the derivation of the colliding impulse P for an

interaction between two solid objects. The colliding impulse is defined (19) as
Pn=>Dt F(t) dt, where F(t) is the colliding force acting on the solid objects.
During the solid–solid interaction, the translational velocities (U1, U2) and
the angular velocities (w1, w2) will be renewed as (U

−

1, U
−

2) and (w
−

1, w
−

2),
namely,

U −

1=U1+Pn/M1, w −1=w1+I−11 (r1×nP) (17)

U −

2=U2−Pn/M2, w −2=w2− I−12 (r2×nP) (18)

where M1 and M2 are the mass, I1 and I2 are the moment of inertia of the
two colliding objects. Vectors r1 and r2 connect to the center of mass of
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Fig. 2. Vectors r1 and r2 connect the colliding point to the center of mass of each object. In
this case, object 1 would actively encounter object 2, because it happened to be at a prior
position in the random list for the time evolution. Here the normal vector n of the collision
surface is defined as the normal vector of the surface of object 1.

each object to the colliding point, see Fig. 2. The normal vector of the
colliding surface n is specified in the caption of the same figure. We con-
sider only the velocity difference between the initial and the final state of
the collision.

(u −1−u −2)−(u1−u2)

=
Pn
M1
+{I −11 (r1×nP)}× r1+

Pn
M2
+{I −12 (r2×nP)}× r2 (19)

where ui=Ui+w× ri, i=1, 2. We apply the Newton’s impact law along
the normal axis of the collision surface, namely,

(u −1−u −2) ·n
(u1−u2) ·n

=−e (20)

Using the scalar product of Eq. (19) and n, we can obtain the expression
for the colliding impulse.

P=
−(1+e)(u1−u2) ·n

{(1/M1+1/M2) n+(I −11 (r1×n))× r1+(I
−1
2 (r2×n))× r2} ·n

(21)

Once we know the colliding impulse, translational and angular velocities of
the solid object can be calculated using Eqs. (17) and (18).

4. SIMULATION OF THE BROWNIAN MOTION

We carried out two numerical simulations to show the effectiveness of
the model. The first simulation is for a single object in a fluctuating fluid.
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In this case, we show that displacements of the object follow a Gaussian
distribution. The second simulation is concerned with a N-body simulation,
where we want to check the solid–solid collision model. In both the simu-
lations, the mean density of RLG particles is set to 5. This number density
can ensure a correct hydrodynamics for RLG fluid. If the number density
is much less than 1, the mean free path of RLG particles could become
longer than the solid object length, a condition that hydrodynamics would
break down. On the other hand, a much higher density would certainly
reduce the noise of physical quantities at every time step. It simply becomes
too expensive to do the calculation. Thus we average hydrodynamic quan-
tities over a long enough time period after the simulation enters into the
steady state. This means that the time-averaged quantities are regarded as
the mean values in the canonical ensemble.

4.1. Simulation of a Single Solid Object

The solid object is a 12×12 square and composed by 144 solid par-
ticles. The mass of each solid particle is 1 which is equivalent to that of
each RLG particle. However the mean density of a solid object is much less
than that of the RLG fluid, which has been set to 5. The background fluid
is statistically isotropic and stationary, namely the mean flow velocity is
zero. The temperature of the system is set to 0.5 so that the solid object
motion can be driven by the fluctuation in the background fluid, that is,
the bombardment of RLG particles on its surface. The basic noise of RLG
model has been numerically proven to be physical in a hybrid MD simula-
tion of solute-solvent dynamics. (10) In this simulation, we measured displa-
cements of the solid object as a function of the elapsed time y. In particu-
lar, the displacement of the solid object is calculated by

DXy(t)=X(t)−X(t−y)

where X(t) indicate the position vector for the center of mass of a solid
object at time t. And we measured these displacements from 20000 steps to
40000 steps at every y=1/10. Here totally 200000 samples were obtained
and we think that this is good enough number to obtain a smooth proba-
bility distribution function for the solid displacements. It is well known
that the probability distribution for such displacements would be Gaussian
when the relaxation time for the decay of autocorrelation in the momentum
of the solid object is much shorter than the time for observation. This also
demonstrates that the solid object is really doing the Brownian motion. The
results for the case y=1/10 over a 20000-step period are shown in Fig. 3,
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Fig. 3. 2D simulation of a single solid object doing Brownian motion in the background
fluid. The Gaussian distributions of displacements in the x and y directions reflect the nature
of such a fluctuating phenomenon. (a) Displacements in the x direction; (b) displacements in
the y direction.

where one can easily find that the probability distribution for displace-
ments is Gaussian as expected.

4.2. N-Body Simulation

The shape of each solid object is a 6×6 square in this numerical
experiment. There are 20 solid objects, which are suspended in a fluid
formed by 18000 RLG particles. The size of the fluid regime is 60×60 with
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doubly periodic boundaries. Each solid object is initialized with a zero
velocity. The initial velocity of the fluid is also set to zero, however, only in
a statistical sense, since a non-zero temperature (T=0.5) is chosen for the
system. When the simulation started, these solid objects were naturally
driven by RLG particles and began to do the Brownian motion, see Fig. 4.
This situation is almost the same as the previous example, except that
solid–solid interactions become possible due to the multiple existences of
solid objects. We take an example of such interactions from the configura-
tion at t=250 time steps. The details are shown in the Fig. 5 and its
caption.

Fig. 4. N-Body’s Brownian motion in a system with doubly periodic system. (a) t=0;
(b) t=250; (c) t=500; (d) t=750. The region highlighted with a circle in (b) indicates a
solid–solid interaction between A and B.
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Fig. 5. The solid–solid interaction between object A and object B. Line arrows represent the
translational velocities, while the curved arrows represent the rotating direction. (a) At
t=200, object A has almost a zero translational velocity and a very small angular velocity.
(b) The interaction occurs at t=250. After this interaction, object A has a translational
velocity together with and a counter-clock wise angular velocity. (c) t=300.

5. CONCLUSION

We developed a new scheme for the simulation of suspended solid
objects in a fluctuating fluid environment. The RLG model is shown to
have a huge potential for the simulation of complex flows. Our model is
able to deal with both the fluid–solid and the solid–solid interactions.
Brownian motions of a single and multiple solid objects are naturally
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reproduced in the simulation. In the near future, we will verify the quanti-
tative accuracy of this model through some 3D benchmarks.
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